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a b s t r a c t

The computer program CRYSTANA is described which implements a method for the crystal-chemical

classification of silicates and related materials. This method is mainly based upon the topological

structure of the connected units of a compound and can be applied when the units are built from

tetrahedra as coordination polyhedra. The classification parameters and the rules which have to be

applied for their determination are summarized and a formalization of the method is provided based

upon a finite graph representation of the units. A description of how CRYSTANA can be used and which

kind of output it produces is included. From this output crystal-chemical formulas can be derived,

which differ slightly from an existing notation in order to meet recommendations of the International

Union of Crystallography.

& 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Silicates form one of the largest classes of inorganic chemical
compounds. The more than 1243 natural silicates that have been
approved as of May 2007 by the International Mineralogical
Association (IMA) as minerals [1], comprise more than 90 vol% of
the earth’s crust and mantle. In addition to the silicate minerals a
large number of synthetic silicates have been reported, many of
which are of great technical importance. It is obvious that
classifications are needed to handle this large number of silicates.

In addition, many other inorganic compounds follow very
similar structural principles. Therefore, a classification of silicates
should be applicable to other compounds as well, in particular to
compounds that contain units of corner-sharing tetrahedra.

The well-known silicate classification of Bragg [2] and Náray-
Szabó [3] is based on the atomic structures of the silicate anions. It
has been extended considerably [4] by selecting a number of
classification parameters, the application of which reveals
correlations between structures, chemical compositions, and
stability of the silicates under varying thermodynamic conditions.
This classification, which is sometimes called ‘Liebau classifica-
tion’, is now widely used.

Free-hand classification of more complicated silicate structures
by using only the information given in [4] may be troublesome
and has sometimes led to miss-assignments. Therefore, the
ll rights reserved.
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program system CRYSTANA has been developed which allows to
automatically classify silicates according to the rules of the
method. CRYSTANA has been tested intensively and may now be
considered as the reference implementation of the classification.
In addition, a formula notation is proposed which differs slightly
from that used in [4], in order to be in accordance with
recommendations of the International Union of Crystallography
(IUCr) [5].

In Section 2 the classification parameters are defined and rules
for their application are given. In Section 3 the classification
method is described on a more formal basis using notions from
graph theory. A description of how to use the program system and
how to interpret the results is given in Section 4. In the last
section an extended notation of crystal-chemical formulas is
introduced.
2. Classification parameters and classification rules

The composition of a silicate can be given as
ðAiÞmi

SinOpðYjÞqj
ðZkÞrk

ðMlÞsl
. Such a silicate contains, in addition to

silicon atoms Si, cations A,1 oxygen anions O and additional anions
Y, Z, and molecules M which are not bonded to Si. If there are
Following a recommendation [6], distinction is made between usual element

symbols such as Si, Al, O; . . . ; given as normal-face Latin letters, and structure site

symbols, given as bold-face Latin letters such as T, G, A . . . for cations with

tetrahedral coordination, octahedral coordination and without regard to their

coordination, respectively, and X, Y for monoatomic anions, Z for polyatomic

anions, and M for molecules such as H2O, CO2, etc.
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Fig. 1. ½TX4� tetrahedra with different values of linkedness L.
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more than one kind of atoms A, Y, Z, and M they are indicated by
their running indices i, j, k, and l, respectively. The subindices
m;n; q; r; and s designate the number of corresponding atoms per
formula unit. As an example, the compositional formula of the
mineral roeblingite is given as Pb2Ca6MnSi6O18ðOHÞ2ðSO4Þ2ðH2OÞ4
with A ¼ Pb;Ca;Mn; Y ¼ OH; Z ¼ SO4; M ¼ H2O [7].

Usually, the Si atoms are tetrahedrally coordinated by four,
sometimes by six, very seldom by five or more than six O atoms.
½SiO4� tetrahedra can directly be connected with other ½SiO4�

tetrahedra by sharing corners. Edge-sharing of ½SiO4� tetrahedra,
although topologically possible, has not been observed. A group of
directly connected tetrahedra is called a connected silicate unit. In
chemical formulas it is set within square brackets. Five-, six-, and
higher coordinated Si atoms are considered as cations which,
together with the other A cations, compensate for the valences of
both the connected silicate units and the Y anions.

The classification of silicates is mainly based on the topological
structure of their connected silicate units. The majority of
crystalline silicates contain only one type of connected silicate
units. There is, however, a smaller number of silicates, called
mixed silicate– anion silicates such as synthetic Y4½SiO4�½Si3O10� [8]
and the mineral okenite, Ca10½Si6O16�½Si6O15�ðH2OÞ18 [9], which
contain more than one type of connected silicate units.

If a silicate contains tetrahedrally coordinated cations T other
than Si, such as LiI, ZnII, AlIII, GeIV, PV, etc., they may optionally be
considered as part of the connected unit. In a similar way, oxygen
atoms of a ½TO4� tetrahedron may, fully or partially, be replaced by
other anions, such as F�I; S�II, or N�III, to give ½TX4� tetrahedra and
½TxXy� as composition of a more general connected unit. In this
sense, the general composition of a connected unit may be written
as ½TxXy� and its topological structure describes the way the ½TX4�

tetrahedra are connected. Therefore, the presented crystal-
chemical classification works not only for silicates, but also for
any compound with connected units built from ½TX4� tetrahedra,
such as aluminates, germanates, phosphates, chromates, etc.

To characterize the topological structure of a connected unit,
the following classification parameters are used, which are
described in more detail in [4, p. 52ff], and [10, p. 30ff]. The
symbols of these classification parameters are given as bold-face
italic letters.
�
 The linkedness L of a ½TX4� tetrahedron is the number of X
anions that it has in common with a neighboring ½TX4�

tetrahedron. L ¼ 0, 1, 2, and 3 stands for isolated, corner-,
edge-, and face-sharing ½TX4� tetrahedra, respectively (Fig. 1).
So far, no oxosilicate anion ½SixOy� with L41 has been
observed. However, ½TX4� tetrahedra with TaSi and with
L41 are quite common.

�
 The connectedness s of a ½TX4� tetrahedron is the number of

other ½TX4� tetrahedra that are linked to it via common X
atoms, independent of the value of L. In oxosilicates so far only
values s ¼ 0, 1, 2, 3, and 4 have been observed, although
higher s values are theoretically possible (Fig. 2).

�
 Branchedness B: Multiple tetrahedra, single rings, and single

chains are called unbranched (uB) if they contain only ½TX4�

tetrahedra with s p2; when they contain tetrahedra with s 42
they are termed branched (B) anions. If each branch is linked to
the non-branch part (stem) of the anion by only one common
element (corner, edge, or face), the anion is called open-

branched (oB). If there are two such common elements for each
branch, the anion is called loop-branched (lB). If a multiple
tetrahedron, single ring, or single chain has both kinds of
branches, the term mixed-branched (olB) is used (Fig. 3).

The ensemble of multiple tetrahedra, single rings, and
single chains, irrespective of whether they are branched or
unbranched, forms the group of fundamental anions. Non-
linear condensation of fundamental anions leads to complex

anions. The branchedness of a complex anion is defined as
follows:
� If all fundamental anions have the same kind of branched-

ness then this is also the branchedness of the complex
anion.
� If among the fundamental anions there are open-branched

and loop-branched chains but no unbranched chains then
the complex anion has the branchedness mixed-branched.
� In all other cases the branchedness is hybrid (hB) (Fig. 3).
�
 The periodicity P is the number of tetrahedra in the repeat unit
of the non-branch part of a fundamental anion, in particular of
a single ring (PR) or single chain (PC).

�
 The dimensionality D is the number of dimensions of infinite

extension of an anion.

�
 The multiplicity M is the number of single tetrahedra, rings,

chains, or layers which are linked to a complex anion of the
same dimensionality.

In general, there are several possibilities for choosing fundamental
chains in complex silicate anions of infinite extension. Hence
appropriate rules have to be fixed in order to get an unambiguous
classification. An intention of the classification is to give
preference to silicate anions that are most common, assuming
that they are the most stable ones. This is accomplished when the
following rules are applied in the given order:

Rule 1: The fundamental chains are chosen as chains of lowest
periodicity which run parallel to the shortest identity period
within the anion, regardless of their branchedness, and from
which the anion can be generated by successive linkage.

Rule 2: If more than one chain is derived in agreement with
Rule 1 the fundamental chains are chosen in the order of
preference: unbranched (uB) 4 loop-branched (lB) 4 open-
branched (oB) 4 mixed-branched (olB) 4 hybrid (hB).

Rule 3: If more than one chain is derived in agreement with
Rules 1 and 2, the fundamental chains are chosen such that their
number is lowest.

With respect to the order of these rules there is a difference to
the order given in [4]: Rule 2 and Rule 3 have been interchanged.
The reason for this modification is that minimizing the number of
fundamental chains before determining the branchedness would
result in selecting sets of fundamental chains with as many
tetrahedra assigned to branches as possible. This is not in
accordance with the preference stated above. An example will
be provided in the next section.
3. Graph-based formalization of the classification method

The application of graph theory is common for the analysis of
the bonding of chemical compounds at different levels of detail
[11]. Graphs allow to provide definitions of properties in a formal
setting and constitute a suitable basis for the specification and
realization of algorithms. At the level of atoms and bonds, the
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Fig. 2. ½TX4� tetrahedra with different values of connectedness s.

Fig. 3. Single chains with different kinds of branchedness B. The branches are given with dotted lines.
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nodes of a graph correspond to the atoms and its edges to the
bonds. When local bonds are modeled by coordination polyhedra
and when a single kind of polyhedron and a single kind of
connection between polyhedra are considered, the same simple
graph form can be used to represent the polyhedra and their
connections. In both cases, the information content of a graph can
be enriched, if necessary. Nodes, for example, can be labeled with
geometric information such as coordinates of atoms and informa-
tion about bond types can be added to the edges.

For the crystal-chemical classification, structures are consid-
ered here at the level of corner-sharing tetrahedra. Geometric
information is used only for the determination of the shortest
identity period, and symmetry information is needed for relating
fundamental chains. Hence a simple graph having nodes labeled
with the coordinates of the central T atoms of the corresponding
tetrahedra is well-suited for representing a structure assuming
that cell data and the space-group of the structure are given
separately. Let us call such a graph simple crystal graph. For ideal
crystals the graph of a structure is infinite. It may consist of a
single or a finite number of infinite components (frameworks), an
infinite number of infinite components (layers, chains), or an
infinite number of finite components (rings, clusters). Taking
translational symmetry into account it is, however, always
possible to provide a finite representation by general graphs in
which multiple edges as well as loops are allowed. The edges of
these graphs are directed from a start node to an end node and are
eventually labeled with a translation vector. For a single
component such a graph can be constructed as follows (for a
formal definition of this graph form see [12]):

Consider the unit cell of the structure with respect to a
primitive basis and all tetrahedra of the component with their
central atoms in this (primitive) unit cell. The set of nodes of the
graph contains exactly one node for each of these tetrahedra. This
means that a node represents a class of translationally equivalent
tetrahedra and that the tetrahedron associated with the node is
the representative of this class. To generate the directed edges of
the graph, consider each node n and all connections of the
associated tetrahedron t. Let t be linked to a tetrahedron t0 and let
n0 be that node, which represents the equivalence class of t0. Then
the link between t and t0 is modeled by an edge e directed from n

to n0. If the central atom of t0 is located in the unit cell, e remains
unlabeled; if it is located in a neighboring cell of the unit cell, e is
labeled with the integral translation vector (xyz) identifying this
cell. Because of translational symmetry every edge e from a node n

to a node n0 has an inverse from n0 to n labeled with -t when t is
the label of e. It is, therefore, convenient to use a single undirected
edge instead of two directed edges for every pair of connected
nodes and to label it appropriately.

The resulting graph is called direction-labeled graph.

Remark. This graph form is similar to the labeled quotient graph
of [13] and the convoluted graph of [14]. When all symmetry
operations of the space-group of the structure are taken into
account, a similar construction based upon an asymmetric unit
instead of the unit cell results in a so-called symmetry-labeled

graph [15].

Example 1. Fig. 4 shows part of the infinite tetrahedra framework
of low-temperature cristobalite [16] (SiO2, space-group P41212,
a ¼ 4:9226, b ¼ 4:9226, c ¼ 6:8173 Å) and the corresponding
direction-labeled graph. The tetrahedra with central atom in the
unit cell are marked 1–4.

In the following, we provide definitions of the classification

parameters referring to the representation of connected (silicate)

units by direction-labeled graphs. The parameters coordination

number ðCNÞT and linkedness L are fixed to 4 and 1, respectively,

since we only consider corner-sharing of tetrahedra.
�
 Connectedness s: The connectedness of a tetrahedron is the
outdegree of the corresponding node in the graph, i.e. it is the
number of edges leaving the node. From the construction of
the graph follows that the outdegree of a node is always
identical to its indegree, i.e. to the number of edges entering
the node.
In Example 1, the outdegree of all nodes is 4; hence the
connectedness s is 4 for all tetrahedra.
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Fig. 4. Part of the tetrahedra framework and the direction-labeled graph of low-temperature cristobalite.
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�
 Direction of shortest repetition: Two translationally equivalent
tetrahedra are represented by the same node in the direction-
labeled graph. It follows that paths between translationally
equivalent nodes in the simple crystal graph correspond (are
mapped) to closed directed walks in the direction-labeled
graph. The sum of all vectors found as labels of the edges of
such a walk determines a direction of repetition. For determin-
ing the shortest identity period it is sufficient to consider all
directed cycles in the graph, i.e. closed walks with no
repetition of nodes up to the start and the end node. The
Euclidean distance associated with the direction of repetition
of a cycle is an identity period. A direction of shortest
repetition is a direction having the shortest identity period.
In Fig. 4 the cycle has the shortest identity
period (4.9226 Å); its direction of repetition is ½100� (in the
usual crystallographic notation). Due to the tetragonal sym-
metry of low-temperature cristobalite, the cycle

has the same shortest identity period of
4.9226 Å with direction of repetition [010].

�
 Dimensionality D: The set of directions of repetition is closed

under addition since the direction-labeled graph represents a
connected unit. It is closed under negation as well since every
edge has an inverse. Hence it forms a submodule of the module
Z3, the set of all integer triplets. The dimension of this
submodule, i.e. the size of a basis, defines the dimensionality
of the connected silicate unit.
In Fig. 4 three linear independent directions of repetition are
[100], [010], and [001]. Therefore, D ¼ 3.

�
 Periodicity P: The non-branch part of a chain corresponds to a

cycle in the direction-labeled graph with the following
properties: its labels sum up to a direction of shortest
repetition and there is no shorter cycle having this property.
The periodicity of a connected silicate unit is the number of
nodes of these cycles. The same holds for rings.
In Fig. 4 there are two such cycles: and

, which both have the periodicity P ¼ 2.

�
 Branchedness B: Each fundamental chain corresponds to a

connected subgraph of the simple crystal graph, i.e. for every
pair of nodes of the subgraph there is a path connecting these
nodes. Two fundamental chains do not share any node and the
union of all nodes of the fundamental chains gives the
complete set of nodes of the graph. This means that the set
of fundamental chains has to provide a so-called node covering
of the simple crystal graph.
The edges of the graph are not represented completely in case
of dimensionality different from 0 since ‘successive linkage’ of
fundamental chains (Rule 1, see above) means connecting
tetrahedra. Connections, however, are represented by edges.
In the direction-labeled graph, possible branches are paths
connected to a cycle c representing the non-branch part of a
chain. The nodes of these paths have no direct connection to c
up to the first node (open-branched) or up to the first and the
last node (loop-branched). In order to determine the funda-
mental chains, cycles with distinct nodes have to be found and
eventually completed by paths which represent branches.
In Fig. 4 a node covering is obtained with unbranched chains of
periodicity PC ¼ 2.

�
 Multiplicity M: In case of oligosilicates and cyclosilicates, i.e. if

dimensionality is 0, multiplicity is defined as the number of
nodes of a maximal path in the direction-labeled graph and as
the number of cycles representing fundamental anions,
respectively. For dimensionality 1, the size of the set of
fundamental chains determines the multiplicity. If dimension-
ality is 2, this parameter is defined as the number of partitions
obtained by grouping fundamental chains into disjoint sets
such that each set represents a layer. If the dimensionality of
the connected unit is D ¼ 3, as in Example 1, the multiplicity
is always 1.

Example 2. In order to demonstrate the possible effect of the
interchange of the Rules 2 and 3 for selecting fundamental chains
consider the two graphs in Fig. 5. They show part of the simple
crystal graph of one sublayer of the double layer in naujakasite
[17]. Two loop-branched chains A and B result if Rule 3 is applied
before Rule 2, i.e. if the number of fundamental chains is
minimized before the branchedness is considered (Fig. 5(a)). The
intended classification, three unbranched fundamental chains A,
B, and C, is obtained with the order Rule 2 before Rule 3, as given
above (Fig. 5(b)).

In the current version of CRYSTANA, a method is used to

determine the multiplicity of layers which might not be in

accordance with the intuitive understanding of layers in some rare

cases. This method works as follows: the set of fundamental

chains is computed as described above and searched for a

partition in two equal-sized subsets having the following

property: for every fundamental chain in one of the subsets there

is a chain in the other set such that both chains are directly

connected. This proceeding is well suited for the majority of the

double layers we analyzed but it may result in the classification of

a silicate as a single layer when there are fundamental chains in

the two ‘layers’ not being directly connected to the other ‘layer’ as

in Li4½Si6O14� [18]. The system generates a warning message if

such a situation cannot be excluded.

4. How to use the system

CRYSTANA [19] has been designed for direct (remote) use on
the Internet. Structure data can be supplied by using a provided
Web form or by specifying a link to a file in CIF format. In addition
to the determination of fundamental chains it is possible to
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Fig. 5. Preference of (a) minimal number of chains and (b) ordering of branchedness for the connected unit of naujakasite.
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compute rings and ring coverings and to compile some ring
statistics. We do not comment on these facilities here, however.

In the Web form the following structure data have to be
supplied:
�
 a trivial name of the structure,

�
 space-group number (according to the International Tables for

Crystallography),

�
 change of axes, if necessary,

�
 setting (0: normal setting, 1: monoclinic first setting, 2:

rhombohedral setting),

�
 lattice centering ðP;A;B; . . .Þ,

�
 lengths of the basis vectors and interaxial angles of the unit

cell (lattice constants),

�
 maximal bond distance dðT� XÞ to consider for determining

tetrahedra ½TX4�,

�
 kind and coordinates of all atoms in the asymmetric unit,

�
 two lists of atoms: one with atoms to be regarded as cations

(T atoms), the other with atoms to be regarded as anions
(X atoms, usually O).

A description of the required format of these data is added to the
input mask.

Results of the computerized classification are available in
textual as well as in graphical form (using VRML and Java applets).
Textual output data are given in the following order:
�
 input data,

�
 parameters and content of the primitive cell,

�
 distances between T atoms and adjacent X atoms.
For each T atom of the asymmetric unit:
�
 coordination number ðCNÞT.
For each T atom of the primitive cell:
�
 immediate neighbors (other T atoms sharing X atoms with the
T atom considered).

For each connected unit:
�
 connectedness s and linkedness L of each T atom,

�
 all T atoms of the connected unit,

�
 type of anion (terminated, ring, chain, layer, and framework)

�
 dimensionality D,

�
 chain and ring periodicity PR and PC, respectively,
�
 multiplicity M,

�
 branchedness B,

�
 information on chains (direction and distance of shortest

repetition, branchedness, atoms, symmetry relations to other
chains),

�
 a warning when layers could be classified differently.

Fast algorithms are used to determine dimensionality and
connected units; the determination of a set of fundamental
chains, however, has been shown to be ‘computationally infea-
sible’ which means that runtime of the algorithm may be
exponential in the size of the graph. Nevertheless, only for
frameworks with large unit cells the computation of the
classification may take more than a few seconds.
5. Crystal-chemical formula notation

From the values of the classification parameters, i.e. from the
values of B, P, M, D, ðCNÞT, s, and L given in the output, the crystal-
chemical formula of the connected unit of a silicate is derived
according to the notation

fB;P;MD
1g½T

dL;sc
t T0dL;sct0 � � �X½1�x1

X½2�x2
�.

This notation follows the recommendation of IUCr [5]. It is,
however, different from the one given in [4] where the periodicity
P of the fundamental chain was written as preceding superscript
to the corresponding silicate atoms. The order, in which the
classification parameters are now given in the formula, are the
same as that used in the spoken name of the connected unit.

In the new formula, information on the constitution of the
connected unit as a whole is given within curly brackets, whereas
information on the individual atoms forming the connected unit
are included in the square brackets.

The crystal-chemical formula of a silicate that contains only
one kind of connected unit follows the scheme

A½ðCNÞA �
a A0½ðCNÞA0 �

a0 � � � f g½ �YyY0y0 � � �ZzZ0z0 � � �MmM0m0 � � � ,

where A;A0 . . . ;Y;Y0 . . . ;Z;Z0 . . . ; and M;M0 . . . are the cations,
monoatomic and polyatomic anions, and molecules, respectively,
that are not considered to be part of the connected unit (see
Examples 3 and 4).

Example 3. For naujakasite [17] (compare Example 2) the crystal-
chemical formula Na½5þ3�

4 Na½5þ4�
2 Fe½4þ2�

fuB;4;22
1g½ðAl; SiÞd1;3c8

ðAl; SiÞd1;4c4 O½1�6 O½2�20� is derived, which can be shortened to
Na6FefuB;4;22

1g½ðAl; SiÞ12O26�.
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If a silicate contains more than one kind of connected unit,
information on these units, written in their corresponding curly
and square brackets, are arranged in the order of increasing values
of dimensionality, D, and multiplicity, M.

Example 4. The crystal-chemical formula for the mineral okenite
[9] is derived as Ca½6�10fuB;3;21

1g½Sid1;2c2 Sid1;3c4 O½1�8 O½2�8 �fuB;3;12
1g

½Sid1;3c6 O½1�15�ðH2OÞ18 or, shortened, Ca10fuB;3;21
1g½Si6O16�fuB;3;12

1g

½Si6O15�ðH2OÞ18. These formulas indicate the co-existence of
silicate double-chains and single-layers.

Following a recommendation by the International Union of Pure
and Applied Chemistry (IUPAC) ([20]), the crystal chemical
formulas of microporous materials with tetrahedral frameworks
follow the general scheme

jAaA0a0 � � �XxX0x0 � � �ZzZ0z0 � � �MmM0m0 j½TtT
0
t0O
½1�
x1

O½2�x2
�.

Detailed crystal-chemical formulas for more complex silicates
and for inorganic compounds with connected units built from
other T cations than Si and Al, and other X anions than O, can be
derived following the procedure described by Liebau [10].
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